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There are multiple different ways of implementing arti-
ficial evolution of collective behaviors. Besides a classical
offline evolution approach, there is, for example, the option
of environment-driven distributed evolutionary adaptation
in the form of an artificial ecology [2] and more generally
there is the approach of embodied evolution [1, 3, 6]. An-
other recently reported approach is the application of nov-
elty search to swarm robotics [5]. In the following, we re-
port an extension of the approach of [7]. The underlying
concept is an information-theoretic analogon to thermody-
namic (Helmholtz) free energy [8]. The assumption is that
the brain is permanently trying to predict future perceptions
and that minimizing the prediction error is basically inher-
ent to brains. This is defined by the ‘free-energy principle’
of [4]. The struggle for prediction success requires a comple-
mentary force that represents curiosity and exploration. In
this abstract we present an extended method called diverse-
prediction that rewards not only for correct predictions but
also for each visited sensory state. This proves to be a bet-
ter approach compared to the method prediction that was
reported before [7].

1. SETUP

As in the preliminary work [7], here we also evolve pairs
of artificial neural networks (ANN). The prediction network,
see Fig. 1(d), predicts future sensor input and the action
network, see Fig. 1(c), outputs the agent’s next action. We
simulate a homogeneous swarm (all agents share the same
genome) of N = 20 agents that move on a ring of circum-
ference L, see Fig. 1(a). Note that there are two different
concepts of populations, the population of simulated agents
and the population of genomes. The agents have four, dis-
crete sensors covering four regions of the agent’s vicinity and
output 1 for ‘there is at least one neighbor’ or 0 otherwise,
see Fig. 1(b). The available actions are: move forward or
invert the heading. We evolve pairs of ANN with a popula-
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Figure 1: Setup of the collective system, sensor
setup, action network, and prediction network [7].

tion of size 50 (2nd concept of population) for 75 generations
in 200 independent runs for each tested setting. The predic-
tion method rewards for good prediction of each sensor value
using fitness function
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cij(t), (1)

whereas N is the swarm size, T is the length of the evaluation
in time steps, and ¢;,;(¢t) = 1 if the prediction of the previous
time step for sensor j of agent ¢ matches the current value of
sensor j, otherwise ¢; ;(t) = 0. The fitness is averaged over
10 independent simulation runs for every evaluated genome.

The fitness function for diverse-prediction rewards for vis-
iting more sensor states (combinations of sensor values) and
making good predictions in those states. For that, we sum
up the ratios between the number of correct predictions for
each visited sensor state and the number of visits of that
state over the whole swarm over time:

1 N—-1T-1 N—-1T-1
FaivpPred = 54 Z (Z Z ci;i(t)/ Z Z n”(t)> , (2)
JEV =0 t=0 i=0 t=0

whereas V' is the set of sensor states which were visited at
least once by an agent.
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(a) 2-d projection of behavior space, evolved be-
haviors and random networks as control for ring
circumference L = 50.
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(b) Comparison 2-d projection to uniform distribu-
tion, chi-square test for L € {5,20,50} (low values
are better).

Figure 2: Results of evolved behaviors for L = 50 and
comparison between projection of behavior space
and uniform distribution.

2. RESULTS

Generally a desired result is a well explored behavior space
— similar, for example, to the approach of novelty search. We
check the degree of exploration by investigating a 2-d pro-
jection of behavior space. One dimension is covered distance
which is a measure of mobility of the agents in the swarm
and is computed as the sum of the distances covered by the
agents normalized by the considered time period and swarm
size. Second dimension is the largest cluster size which is the
maximum number of agents within sensor range normalized
by swarm size over a period at the end of the evaluation.

We compare the distribution of the 2-d projection of the
collective behaviors evolved by the prediction method, the
diverse-prediction method, and a control population of ran-
dom ANN. Fig. 2(a) shows results for a low agent density
setup (L = 50). Behaviors evolved by the prediction method
are biased towards low mobility of agents that stay apart
from each other (dispersed). The control experiment with
random networks mostly generates behaviors with very low
mobility (moving back and forth) or in fewer cases agents
move constantly in a fixed direction. In contrast, the diverse-
prediction method evolves diverse behaviors as clearly seen
in Fig. 2(a). The three methods were tested for 3 settings:
high (L = 5), medium (L = 20), and low agent density
(L = 50). For statistical comparison of the diversity of be-

haviors, the projected behavior space is divided into a 5 x 15
grid in each setup and Pearson’s x? test is used over the cells
of the grid to compare the distributions of the behaviors with
a uniform distribution (i.e., ideal case). We find that all
the three distributions of prediction, diverse-prediction, and
random are still far from a uniform distribution (P > 0.99).
Fig. 2(b) shows the value of the x? statistics for the three
methods. The lower the value is, the closer is the tested
distribution to a uniform distribution. We find that the pre-
diction method performs well when the density is medium as
reported before [7]. Otherwise it fails to generate diverse be-
haviors. The diverse-prediction method performs best and
is independent of the agent density.

3. CONCLUSION

Our new method diverse-prediction implements a selec-
tion pressure to visit many different sensor states as well as
to predict these states correctly. As a result, the evolved col-
lective behaviors are more diverse and this diversity is less
dependent on appropriate swarm densities. In future work,
we plan to extend this approach and to investigate necessary
conditions for the emergence of more complex behaviors also
in environments that are closer to robotics.
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